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You Can Find More on the Topics of This Talk Here:
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Network Traffic is Growing Tremendously
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If the Past Informs the Future: Expect Exponential Network Traffic Growth

33% of US downloads
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Looked at From a Global WDM Transponder Sales Point of View
 Global Network Traffic is Growing Around 45%

 ~100 Petabit/s

Compare with Cisco VNI:
~100 EB/month
~300 Terabit/s (average)
~24% growth per year

End-user IP traffic
End-to-end bytes
Peak-average

 >2 Exabit/s
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Technology scaling Exponential trend period CAGR
Supercomputer performance 1995 – 2017 90%

Microprocessor performance 1980 – 2017 40% - 70%

Storage capacity 1980 – 2017 60%

Core router capacity 1985 – 2017 45%

Wireless interfaces 1995 – 2017 60%

Fixed access interfaces 1983 – 2017 40 - 55%

Traffic Growth Driven by Compute, Storage, and Access Technologies

~60%
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20%

Optical Networking: Interface Rates
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20%

Optical Networking: Interface Rates: ~10T Client Interfaces by ~2025?
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Nokia* 7950
6 x 400G

Multiplexing

Inverse
Multiplexing

40%

* Nokia FP4: 2.4T packet processing; 7950-XRS-20e: 6 x 400G per blade

20 x 1T
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Per-Lane Speed vs. Switching Capacity
The Exact Same Scaling Disparities are Found in Switch Chips
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Figure after:
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20%

Wavelength Division Multiplexing: Petabit/s systems by ~2025?
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Technology scaling Exponential trend period CAGR

Supercomputer performance 1995 – 2017 90%

Microprocessor performance 1980 – 2017 40% - 70%

Storage capacity 1980 – 2017 60%

Core router capacity 1985 – 2017 45%

Switch chip capacity 1998 – 2018 40%

Wireless interfaces 1995 – 2017 60%

Fixed access interfaces 1983 – 2017 40 - 55%

Router interface speed
1980 – 2005 70%

2005 – 2017 20%

Transport interface speed 1985 – 2017 20%

Per-lane chip interface speed 1998 - 2018 20%

WDM capacity per fiber
1995 – 2000 100%

2000 – 2017 20%

Growing Disparity Between Generation and Transport of Information

~20%
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What are the limits ? How do we get to where we need to be ?
How did we get to where we are ? Where do we need to go long-term ?
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Capacity scaling:
What are the options ?

𝐶𝐶 = 2 𝑀𝑀 𝐵𝐵 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)
Polarization Bandwidth

Spatial paths

Pre-log (multiplexing) factors Logarithmic (modulation) capacity
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𝐶𝐶 = 2 𝑀𝑀 𝐵𝐵 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)
Polarization Bandwidth

Spatial paths

Pre-log (multiplexing) factors Logarithmic (modulation) capacity

Capacity scaling:
What are the options ?
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Fundamental Scalability Problems: Shannon Limits to Optical Fiber Capacity

2
100 1,000 10,000

Transmission distance L [km]

S
pe

ct
ra

l e
ffi

ci
en

cy
 [b

/s
/H

z]

5

10

15

20 C ~ log2(1+SNR)

Optical amplifier noise

Nonlinear interference noise

~1/L

[P. Poggiolini et al., J. Lightwave Technol. (2014)]
[R. Dar et al., Opt. Express (2014)]
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Record Experiments Approaching Fundamental Limits
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[G. Böcherer et al., IEEE Trans. Commun. (2015)]
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Increasing Capacity by Improving the SNR C ~ log2(1+SNR)

• Digital Backpropagation
(and various computationally simpler approximations)

• Nonlinear Fourier Transform
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Increasing Capacity by Improving the SNR C ~ log2(1+SNR)

Recent comprehensive reviews:
[Dar and Winzer, J. Lightwave Technol. (2017)]
[Cartledge et al., Optics Express (2017)]

• Digital Backpropagation
(and various computationally simpler approximations)

• Nonlinear Fourier Transform
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[Essiambre et al., J. Lightwave Technol. (2010)]

Increasing Capacity by Improving the SNR C ~ log2(1+SNR)

• Digital Backpropagation
(and various computationally simpler approximations)

• Nonlinear Fourier Transform

Tx Rx

Distributed Noise
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Increasing Capacity by Improving the SNR C ~ log2(1+SNR)

• Digital Backpropagation
(and various computationally simpler approximations)

• Nonlinear Fourier Transform

• Low-loss amplification
(Raman, phase-sensitive)

Example: At 20 dB SNR, what does a 3-dB lower noise figure buy you?

log2(100)  log2(200)

Don’t mess with the SNR !

… 6.6 b/s/Hz  7.6 b/s/Hz … 15% more capacity
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Increasing Capacity by Improving the SNR

• Low-loss or low-nonlinearity fiber

C ~ log2(SNR)

• Digital Backpropagation
(and various computationally simpler approximations)

• Nonlinear Fourier Transform

[Petrovich, ECOC 2012]

• Low-loss amplification
(Raman, phase-sensitive)

Example: At 20 dB SNR, what does a 10-dB higher launch power buy you?
log2(100)  log2(1000)

Don’t mess with the SNR !

… 6.6 b/s/Hz  10.0 b/s/Hz … 50% more capacity
• Just in order to double capacity, one needs αdB γ / 64
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𝐶𝐶 = 2 𝑀𝑀 𝐵𝐵 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)
Polarization Bandwidth

Spatial paths

Pre-log (multiplexing) factors Logarithmic (modulation) capacity

Trading Modulation for Multiplexing
A Good Strategy for a Power-Limited Channel
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Trading Modulation for Multiplexing
A Good Strategy for a Power-Limited Channel

Example: At 20 dB SNR, what can I do with 3 dB more overall system power ?
log2(100)  log2(200) … 6.6 b/s/Hz  7.6 b/s/Hz … 15% more capacity
log2(100)  2 log2(100) … 6.6 b/s/Hz  13.2 b/s/Hz … 100% more capacity

Logarithmic Shannon term (modulation)

𝐶𝐶 = 2𝑀𝑀𝐵𝐵 log2(1 + 𝑃𝑃/2𝑀𝑀𝐵𝐵𝑆𝑆0)

Linear (“pre-log”) term (multiplexing)

Maximum capacity for “infinite multiplexing” in 𝐵𝐵 and/or 𝑀𝑀:

lim
𝑀𝑀→∞

𝐶𝐶 = (𝑃𝑃/𝑆𝑆0) log2 𝑒𝑒
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Massive Spatial Parallelism for Cost Efficient Submarine Systems

Terminal 
station

Terminal 
station Ocean

Fixed electrical 
power supply !

[A Pilipetskii., OFC Tutorial (2015)]
[O. Sinkin, Phot. Technol. Lett. (2017)]
[R. Dar et al., J. Lightwave Technol.(2018)]
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Submarine Cable Capacity Model

𝐶𝐶 = 2𝑀𝑀𝐵𝐵 log2 1 +
𝑃𝑃𝑆𝑆𝑃𝑃

𝑆𝑆𝑁𝑁𝑁(𝐹𝐹𝑒𝑒
𝛼𝛼𝛼𝛼
𝑁𝑁+1 − 1) + 𝜒𝜒′ log𝐵𝐵 𝑃𝑃𝑆𝑆𝑃𝑃3

N: Number of amplifiers
L: System length
𝛼𝛼: Fiber attenuation
𝐹𝐹: Amplifier noise figure
𝑁𝑁𝑁: Photon energy
𝜒𝜒𝜒: NLIN coefficient

Power spectral density of the signal
System bandwidth

Number of
spatial paths

ASE Nonlinear 
interference 
noise (NLIN) 

[R. Dar et al., Proc. ECOC, Tu.1.E (2017) and JLT (2018)]
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Maximum Supply Power Constraint
S

N
R

Launch power

Maximum 
available

power

Nonlinearity
optimized
launch 
power

Terminal 
station

Terminal 
station

Ocean

Fixed electrical 
power supply !

[R. Dar et al., Proc. ECOC, Tu.1.E (2017) and JLT (2018)]
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Maximum Supply Power Constraint
S

N
R

Launch power

Nonlinearity
optimized
launch 
power

Terminal 
station

Terminal 
station

Ocean

Fixed electrical 
power supply !

As number of spatial paths 
and amplifiers increases

Maximum 
available

power

[R. Dar et al., Proc. ECOC, Tu.1.E (2017) and JLT (2018)]
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Implications of a Cost Optimized Submarine SDM System
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Number of spatial paths 𝑀𝑀

• Nonlinearities become insignificant
• Low-NL fiber becomes less relevant
• Digital NL becomes less relevant

• Significant cost/bit savings for ~100 fibers 
per cable (even without any integration!)

[R. Dar et al., Proc. ECOC, Tu.1.E (2017) and JLT (2018)]

~44% cost/bit reduction

• SDM integration may save another ~35%
• SDM fiber could sell at a premium to avoid 

higher cabling and deployment costs
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𝐶𝐶 = 2 𝑀𝑀 𝐵𝐵 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)

Trading Modulation for Multiplexing
A Good Strategy for a Power-Limited Channel

Where should I put my power?

𝑀𝑀 and 𝐵𝐵 are not equivalent, as amplifier gain flattening means killing power !
[A Pilipetskii., OFC Tutorial (2015)]
[O. Sinkin, Phot. Technol. Lett. (2017)]
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Implications of a Cost Optimized Submarine SDM System

• Amplifier bandwidth x Spatial paths

𝐶𝐶 = 𝑀𝑀𝐵𝐵 log2 1 +
𝜂𝜂𝑂𝑂𝑂𝑂𝑃𝑃𝑒𝑒

𝑆𝑆2𝑀𝑀𝐵𝐵𝑁𝑁𝑁(𝐹𝐹𝑒𝑒
𝛼𝛼𝛼𝛼
𝑁𝑁 − 1)
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𝐹𝐹 = 5 𝑑𝑑𝐵𝐵
𝐹𝐹 = 3 𝑑𝑑𝐵𝐵

𝐹𝐹 = 7 𝑑𝑑𝐵𝐵
𝐹𝐹 = 9 𝑑𝑑𝐵𝐵

[R. Dar et al., Proc. ECOC, Tu.1.E (2017) and JLT (2018)]

Half C 
band

C
band

C+L 
band

Bandwidth 18 nm 35 nm 70 nm

OA efficiency 6.5% 2.5% 1.3%

Noise figure 5.4 dB 5.0 dB 5.7 dB

Normalized cost 0.7 2 3.6

System cost/bit 0.0226 0.0268 0.0305

Optimum M 350 90 34

Cable Capacity 4.96 Pb/s 2.37 Pb/s 1.52 Pb/s

• Amplifier efficiency / Noise figure
• More supply power doesn’t help much



32 © Nokia 2018

𝐶𝐶 = 2 𝑀𝑀 𝐵𝐵 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)
Polarization Bandwidth

Spatial paths

Pre-log (multiplexing) factors Logarithmic (modulation) capacity

Bandwidth scaling is only required if parallel fiber is
not available or too expensive to deploy
(which is unfortunately frequently the case)
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Ultra-Wideband Amplified Systems
100-nm SOA                   160-nm Raman amplifier in Tellurite fiber

C ~ B x log2(SNR)

[J. Renaudier et al., Proc. ECOC, Th.PDP.A.3 (2017)] [A. Mori et al., El. Lett. 1442 (2001)]
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Be Careful With Bandwidth Scaling Phantasies
What Counts in Engineering is the Relative Bandwidth
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System BW

Center frequency

C-band: 2.3%

Nested antiresonant nodeless HCF

C ~ B x log2(SNR)

[D. J. Richardson, tutorial Tu3H.1, OFC 2017]

Hollow-core fiber (HCF)

100-nm SOA: 6.6%
NAN-HCF: 67% (= octave-spanning)

[Renaudier et al., ECOC 2017]
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Absolute Bandwidth, Relative Bandwidth, and Carrier Frequency
Is Going to the Extreme UV or the Soft X-Ray Range a Crazy Idea ?

𝐶𝐶 = 2 𝑀𝑀 𝐵𝐵 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)

Polarization Carrier frequency

Spatial paths

Pre-log (multiplexing) factors Logarithmic (modulation) capacity

𝐶𝐶 = 2 𝑀𝑀 𝑁𝑁𝑐𝑐 𝐵𝐵𝑟𝑟𝑒𝑒𝑟𝑟 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)

Relative bandwidth

(In analogy to the transition from electrical cables to optical fiber in the 1970s)
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Absolute Bandwidth, Relative Bandwidth, and Carrier Frequency
Is Going to the Extreme UV or the Soft X-Ray Range a Crazy Idea ?

For 𝑁𝑁𝑁𝑐𝑐 ≫ 𝑘𝑘𝑘𝑘:
Fixed photons/bit at fixed SE
Energy/bit ~ 𝑁𝑁𝑁𝑐𝑐
 Not a viable scaling

Classical

Impossible (even with arbitrary quantum tricks)

Quantum
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Absolute Bandwidth, Relative Bandwidth, and Carrier Frequency
Is Going to the Extreme UV or the Soft X-Ray Range a Crazy Idea ?

Classical

Impossible (even with arbitrary quantum tricks)

Quantum

Sacrifice SE while increasing 𝑀𝑀
Example:

100x higher 𝑁𝑁𝑐𝑐 (100x more 𝐶𝐶)
10x lower SE
10x higher 𝑀𝑀
 10x net gain at constant 𝑀𝑀
 viable scaling, even if less

than hoped for
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Absolute Bandwidth, Relative Bandwidth, and Carrier Frequency
Is Going to the Extreme UV or the Soft X-Ray Range a Crazy Idea ?

Classical Quantum

Impossible (even with arbitrary quantum tricks)

Quantum techniques (Gordon)
Example:

350x higher 𝑁𝑁𝑐𝑐 (350x more 𝐶𝐶)
10x lower SE
10x higher 𝑀𝑀
 35x net gain at constant 𝑀𝑀
 A bit better than classical
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Fairly Limited Capacity Gains When Going to Higher Carrier Frequencies
Requires as of Yet Unknown Quantum and UV/X-Ray Technologies
 Probably Indeed a Crazy Idea
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And the winner is…

Polarization Carrier frequency

Spatial paths

Pre-log (multiplexing) factors Logarithmic (modulation) capacity

𝐶𝐶 = 2 𝑀𝑀 𝑁𝑁𝑐𝑐 𝐵𝐵𝑟𝑟𝑒𝑒𝑟𝑟 𝑙𝑙𝑙𝑙𝑔𝑔2(1 + 𝑆𝑆𝑆𝑆𝑆𝑆)

Relative bandwidth
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Full Parallelism Leads to WDM x SDM Systems
What Might a 10T Interface in a 1P System Look Like in ca. 2024?

WDM x SDM

• Matrix of “unit cells” in WDM x SDM space  Replicate simple unit cells
• Bandwidth of unit cell driven by high-speed opto-electronics
• Bit rate of unit cell driven by symbol rate and modulation format
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Inside a unit cell: High-speed modulation records
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[S. Randel et al., OFC 2014]

90 GBd 64-QAM (1.08 Tb/s)

[G. Raybon et al., IPC 2015]

  

   

P M107 GBd 16-QAM (856 Gb/s)

[G. Raybon et al., ECOC 2013]

Polarization & Quadrature

[X. Chen et al., OFC 2016]

190 GBd electrical PAM-4



43 © Nokia 2018

Pushing Interface Rates to New Limits
Commercial Perspective of High-Speed Opto-Electronics & DSP

• Commercial CMOS ASICs with converters for symbol rates of 100+ Gbaud

• Commercial 1T interfaces with meaningful transmission reach

• Commercial multi-core ASIC DSP processing power of several (10?) Tb/s
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Commercial Single-Carrier Interface Rates
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Spectral vs. Spatial Superchannels

Spectral Superchannel
Traditional technology
Pay as you grow
Filtering and switching advantages
Compensate cross-channel NL

Parallel paths from day one
Better array integration

Compensate array crosstalk

Spatial Superchannel

Metro / Long-haul Networking Submarine & DCI Point-to-Point

Spectral superchannels Spatial superchannels
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Using SDM, We Can Comfortably Scale Networks for the Next 20 Years
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Like in Any Parallel Solution: Volume is Good, But Integration is Key

• Multi-channel modulators
• Multi-channel drivers
• Multi-channel receivers
• Multi-channel ASICs
• Multi-channel optical amplifiers
• Parallel optical switch elements
• Multi-path fibers, connectors, splices
• Shared power supplies, comb sources, etc.

C
os

t/b
it

Parallel systems

Architecture,
Volume

Integration

TX

TX

TX
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Integration of Parallel Fiber Channels

[Imamura, ECOC 2011][Hayashi, ECOC 2011][Zhu, ECOC 2011] [Sakaguchi, OFC 2012][Takara, ECOC 2012]

[Cia, IPS SumTop 2012][Ryf, ECOC 2011] [Ryf, FiO 2012] [Mizuno, OFC 2014]

[Kobayashi, ECOC 2013]

[Petrovich, ECOC 2012][Doerr, ECOC 2011]

[Hayashi, OFC 2011]

[Y. Geng et al., SPIE 2015] [T. Hayashi et al., ECOC 2017]
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Mode Coupling Increases Nonlinear Transmission Performance
Long-Haul Experimental Confirmation

[R. Ryf et al., ECOC-PD (2016)]
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MIMO for SDM is Not a Big Problem
ASICs are Limited by CD Filter and FEC

• 4x MIMO DSP complexity for 6 modes
(2x2 MIMO 12x12 MIMO)

[S. Randel et al., ECOC 2013, Th.2.C.4]
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Equalizer length

1 mode

3 modes

6 modes

9 modes

10 modes

CD 
FilterFEC

PDM

• MIMO is only ~10% of overall DSP today:
 Only ~1.3x higher ASIC complexity

• The real problem: Interfacing of many coherent 
frontends
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Three Key Aspects of Transponder Integration
1. The Opto-Electronic Array Integration Challenge
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DSP

RX
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RX

DSP

DSP

DSP

• 10T = 10 x 1T = 100 x 100G
• Reduced speed  Higher parallelization
• Non-negotiable: Cost, energy, footprint
• Similar to short-reach array approaches

16 x 25G
[T. Aoki, ECOC 2017]

4 x 25G (PSM4)
[Y. De Koninck, ECOC 2017]
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Three Key Aspects of Transponder Integration
2. The Optics-Electronics Array Integration Challenge
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Optics-Electronics
Integration

DSP

DSP

DSP

RX

RX

RX

DSP

DSP

DSP

[C.R.Doerr et al., OFC 2017]

Courtesy: M. Smit, K. Williams

[D. Petousi et al., CLEO 2016]

[M. Rakowski et al., OFC 2013]

[K. Yashiki et al., OFC 2015]
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Three Key Aspects of Transponder Integration
3. The Holistic Integration of Opto-Electronics With DSP
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Three Key Aspects of Transponder Integration
3. The Holistic Integration of Opto-Electronics With DSP

4.4 dB

[X. Chen et al., ECOC 2016]

I/Q modulator crosstalk
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What’s the Role of MIMO-SDM ?

Sandra Kay Miller,
Information Security Magazine,
November 2006

• In SDM: Mode dependent loss (MDL) from eavesdropping
• Detect an eavesdropper
• Achieve provable security against physical layer attacks

• How secure can an SDM waveguide be?
• How can an SDM waveguide be wire-tapped?

Fiber Tapping

• Information-theoretic security metrics (fundamental security)
• “Secrecy Capacity”: CAlice-Bob – CAlice-Eve
• Force Eve to induce enough MDL or not get enough signal

ttp://informationsecurity.techtarget.com/magItem/0,291266,sid42_gci1228170,00.html
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A Single Spatial Path is ~10 to 100 Tb/s !  7% is 70 Gb/s to 7 Tb/s
MIMO-SDM Can Support Very Large “Fundamentally Secure” Bit Rates

[K. Guan et al., Proc. ECOC 2012]
[K. Guan et al., Asilomar 2012]
[K. Guan et al., IEEE Trans. Inf. Sec. For. (2015)]
[K. Guan et al., Opt. Commun. (2018)]
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Conclusions
1. Network traffic growth remains strong

Sold WDM transponder capacity scales at ~45%
Scaling is widely supported by compute, storage, access scaling
Optical transport is significantly falling behind
 Worrisome scaling disparities (“Capacity Crunch”)

2. Parallelism is mandatory
log(SNR) scaling vs. linear (pre-log) multiplexing gains

3. By 2025 we will need 10T interfaces in 1P systems
Massively integrated (coherent) systems: B x M x log(SNR)
Scaling using WDM x SDM

4. Integration, integration, integration
Holistic view of client and line interfaces integrated onto digital CMOS chips
“Fiber-in-fiber-out” (FIFO) all-in-one transport processor solutions

5. Interesting “fundamental security” aspects

Line
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